skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kochukhov, Oleg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For nearly a decade, observations have shown that many older Sun-like stars spin faster than predicted, a phenomenon known as weakened magnetic braking (WMB). The leading hypothesis for WMB is a weakening of the large-scale dipole field, which leads to a less efficient angular momentum loss. To test this hypothesis on a star known to be in the WMB regime, we present the first Zeeman Doppler imaging (ZDI) map of the Sun-like starτCeti, reconstructed using spectropolarimetric data from the Canada–France–Hawai‘i Telescope. Our ZDI analysis reveals a remarkably simple, stable, and weak (〈B〉 = 0.17 G) magnetic field, characterized by a predominantly dipolar (∼92% magnetic energy contained inl= 1 modes), and highly axisymmetric (∼88% magnetic energy contained inm < l/2 modes) morphology. We infer a dipole field strength ofBdip = 0.31 G, nearly an order of magnitude weaker than standard braking model predictions, providing direct confirmation of the weakened large-scale dipole predicted by the WMB hypothesis. This work establishes a new benchmark for ZDI, demonstrating that even extremely quiet stars in the WMB regime are accessible to this technique. 
    more » « less
    Free, publicly-accessible full text available September 15, 2026
  2. Abstract Weakened magnetic braking (WMB) was originally proposed in 2016 to explain anomalously rapid rotation in old field stars observed by the Kepler mission. The proximate cause was suggested to be a transition in magnetic morphology from larger to smaller spatial scales. In a series of papers over the past 5 yr, we have collected spectropolarimetric measurements to constrain the large-scale magnetic fields for a sample of stars spanning this transition, including a range of spectral types from late F to early K. During this time, we gradually improved our methods for estimating the wind braking torque in each of our targets, and for evaluating the associated uncertainties. Here, we reanalyze the entire sample with a focus on uniformity for the relevant observational inputs. We supplement the sample with two additional active stars to provide more context for the evolution of wind braking torque with stellar Rossby number (Ro). The results demonstrate unambiguously that standard spin-down models can reproduce the evolution of wind braking torque for active stars, but WMB is required to explain the subsequent abrupt decrease in torque as Ro approaches a critical value for dynamo excitation. This transition is seen in both the large-scale magnetic field and the X-ray luminosity, indicating weakened coronal heating. We interpret these transitions as evidence of a rotational threshold for the influence of Coriolis forces on global convective patterns and the resulting inefficiency of the global stellar dynamo. 
    more » « less
    Free, publicly-accessible full text available September 16, 2026
  3. Abstract There is an intricate relationship between the organization of large-scale magnetic fields by a stellar dynamo and the rate of angular momentum loss due to magnetized stellar winds. An essential ingredient for the operation of a large-scale dynamo is the Coriolis force, which imprints organizing flows on the global convective patterns and inhibits the complete cancellation of bipolar magnetic regions. Consequently, it is natural to expect a rotational threshold for large-scale dynamo action and for the efficient angular momentum loss that it mediates through magnetic braking. Here we present new observational constraints on magnetic braking for an evolutionary sequence of six early K-type stars. To determine the wind braking torque for each of our targets, we combine spectropolarimetric constraints on the large-scale magnetic field, Lyαor X-ray constraints on the mass-loss rate, as well as uniform estimates of the stellar rotation period, mass, and radius. As identified previously from similar observations of hotter stars, we find that the wind braking torque decreases abruptly by more than an order of magnitude at a critical value of the stellar Rossby number. Given that all of the stars in our sample exhibit clear activity cycles, we suggest that weakened magnetic braking may coincide with the operation of a subcritical stellar dynamo. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  4. Abstract Stellar magnetic fields have a major impact on space weather around exoplanets orbiting low-mass stars. From an analysis of Zeeman-broadened Feilines measured in near-infrared SDSS/APOGEE spectra, mean magnetic fields are determined for a sample of 29 M dwarf stars that host closely orbiting small exoplanets. The calculations employed the radiative transfer code Synmast and MARCS stellar model atmospheres. The sample M dwarfs are found to have measurable mean magnetic fields ranging between ∼0.2 and ∼1.5 kG, falling in the unsaturated regime on the 〈B〉 versusProtplane. The sample systems contain 43 exoplanets, which include 23 from Kepler, nine from K2, and nine from Transiting Exoplanet Survey Satellite. We evaluated their equilibrium temperatures, insolation, and stellar habitable zones and found that only Kepler-186f and TOI-700d are inside the habitable zones of their stars. Using the derived values of 〈B〉 for the stars Kepler-186 and TOI-700 we evaluated the minimum planetary magnetic field that would be necessary to shield the exoplanets Kepler-186f and TOI-700d from their host star’s winds, considering reference magnetospheres with sizes equal to those of the present-day and young Earth, respectively. Assuming a ratio of 5% between large- to small-scaleB-fields, and a young-Earth magnetosphere, Kepler-186f and TOI-700d would need minimum planetary magnetic fields of, respectively, 0.05 and 0.24 G. These values are considerably smaller than Earth’s magnetic field of 0.25 G ≲B≲ 0.65 G, which suggests that these two exoplanets might have magnetic fields sufficiently strong to protect their atmospheres and surfaces from stellar magnetic fields. 
    more » « less
  5. ABSTRACT We use the magnetic field components measured by Zeeman Doppler imaging (ZDI) to calculate the stellar surface force and torque due to magnetic stresses for the fast rotators σ Ori E, 36 Lyn, and CU Vir, and the slow rotator τ Sco. If we assume the stars have spherical photospheres, the estimated torques give spin-down time-scales no larger than 7 × 105 yr. For σ Ori E, the predicted spin-down time-scale, ≃ 6000 yr, is much less than the observationally measured time-scale of ≃ 106 yr. However, for CU Vir, we find that the spin-down time-scale from its ZDI map is 7 × 105 yr in good agreement with its average rate of spin-down from 1960 to 2010. With the exception of τ Sco, the net force due to magnetic stresses at the stellar surface are large compared to the surface-integrated pressure. We discuss possible reasons for the large values of the forces (and torques), and suggest that the likely explanation is that rotation and the magnetic stresses create significant departures from spherical symmetry. 
    more » « less
  6. Abstract Average magnetic field measurements are presented for 62 M-dwarf members of the Pleiades open cluster, derived from Zeeman-enhanced Feilines in theHband. A Markov Chain Monte Carlo methodology was employed to model magnetic filling factors using Sloan Digital Sky Survey (SDSS) IV APOGEE high-resolution spectra, along with the radiative transfer code Synmast, MARCS stellar atmosphere models, and the APOGEE Data Release 17 spectral line list. There is a positive correlation between mean magnetic fields and stellar rotation, with slow-rotator stars (Rossby number, Ro > 0.13) exhibiting a steeper slope than rapid rotators (Ro < 0.13). However, the latter sample still shows a positive trend between Ro and magnetic fields, which is given by 〈B〉 = 1604 × Ro−0.20. The derived stellar radii when compared with physical isochrones show that, on average, our sample shows radius inflation, with median enhanced radii ranging from +3.0% to +7.0%, depending on the model. There is a positive correlation between magnetic field strength and radius inflation, as well as with stellar spot coverage, correlations which together indicate that stellar spot-filling factors generated by strong magnetic fields might be the mechanism that drives radius inflation in these stars. We also compare our derived magnetic fields with chromospheric emission lines (Hα, Hβ, and CaiiK), as well as with X-ray and Hαto bolometric luminosity ratios, and find that stars with higher chromospheric and coronal activity tend to be more magnetic. 
    more » « less
  7. Abstract The consistently low activity level of the old solar analog 51 Peg not only facilitated the discovery of the first hot Jupiter, but also led to the suggestion that the star could be experiencing a magnetic grand minimum. However, the 50 yr time series showing minimal chromospheric variability could also be associated with the onset of weakened magnetic braking (WMB), where sufficiently slow rotation disrupts cycling activity and the production of large-scale magnetic fields by the stellar dynamo, thereby shrinking the Alfvén radius and inhibiting the efficient loss of angular momentum to magnetized stellar winds. In this Letter, we evaluate the magnetic evolutionary state of 51 Peg by estimating its wind braking torque. We use new spectropolarimetric measurements from the Large Binocular Telescope to reconstruct the large-scale magnetic morphology, we reanalyze archival X-ray measurements to estimate the mass-loss rate, and we detect solar-like oscillations in photometry from the Transiting Exoplanet Survey Satellite, yielding precise stellar properties from asteroseismology. Our estimate of the wind braking torque for 51 Peg clearly places it in the WMB regime, driven by changes in the mass-loss rate and the magnetic field strength and morphology that substantially exceed theoretical expectations. Although our revised stellar properties have minimal consequences for the characterization of the exoplanet, they have interesting implications for the current space weather environment of the system. 
    more » « less
  8. Abstract During the first half of their main-sequence lifetimes, stars rapidly lose angular momentum to their magnetized winds, a process known as magnetic braking. Recent observations suggest a substantial decrease in the magnetic braking efficiency when stars reach a critical value of the Rossby number, the stellar rotation period normalized by the convective overturn timescale. Cooler stars have deeper convection zones with longer overturn times, reaching this critical Rossby number at slower rotation rates. The nature and timing of the transition to weakened magnetic braking have previously been constrained by several solar analogs and two slightly hotter stars. In this Letter, we derive the first direct constraints from stars cooler than the Sun. We present new spectropolarimetry of the old G8 dwarfτCet from the Large Binocular Telescope, and we reanalyze a published Zeeman Doppler image of the younger G8 star 61 UMa, yielding the large-scale magnetic field strengths and morphologies. We estimate mass-loss rates using archival X-ray observations and inferences from Lyαmeasurements, and we adopt other stellar properties from asteroseismology and spectral energy distribution fitting. The resulting calculations of the wind braking torque demonstrate that the rate of angular momentum loss drops by a factor of 300 between the ages of these two stars (1.4–9 Gyr), well above theoretical expectations. We summarize the available data to help constrain the value of the critical Rossby number, and we identify a new signature of the long-period detection edge in recent measurements from the Kepler mission. 
    more » « less
  9. null (Ed.)
    During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle-age, while stellar activity continues to decline. We aim to characterize this mid-life transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and ρ CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star (ρ CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of ρ CrB is consistent with the expected evolution of its mean activity level, and that weakened braking models can more readily explain its relatively fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this mid-life transition in solar-type stars. 
    more » « less
  10. Abstract The bright starλSer hosts a hot Neptune with a minimum mass of 13.6Mand a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system and constrain the evolutionary pathway that led to its present configuration. We detect solar-like oscillations in time series photometry from the Transiting Exoplanet Survey Satellite, and we derive precise asteroseismic properties from detailed modeling. We obtain new spectropolarimetric data, and we use them to reconstruct the large-scale magnetic field morphology. We reanalyze the complete time series of chromospheric activity measurements from the Mount Wilson Observatory, and we present new X-ray and ultraviolet observations from the Chandra and Hubble space telescopes. Finally, we use the updated observational constraints to assess the rotational history of the star and estimate the wind braking torque. We conclude that the remaining uncertainty on the stellar age currently prevents an unambiguous interpretation of the properties ofλSer, and that the rate of angular momentum loss appears to be higher than for other stars with a similar Rossby number. Future asteroseismic observations may help to improve the precision of the stellar age. 
    more » « less